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Let Fn(z) be Faber polynomials associated with an m-cusped hypocycloid. We
derive an explicit algebraic expression for Fn(z) via a Cauchy integral formula.
Using a differential equation of Fn(z), we precisely represent Fn(z) in terms of
generalized hypergeometric functions. � 1996 Academic Press, Inc.

1. INTRODUCTION

Let E be any closed continuum in the extended complex plane C� . The
Riemann mapping theorem asserts that there exists a conformal mapping
w=8(z) of C� "E onto the exterior of a circle |w|=\E in the w-plane. For
a unique choice of \E , we can insist that

8(�)=�, 8$(�)=1

so that, in a neighborhood of infinity,

8(z)=z+a0+
a1

z
+

a2

z2+ } } } . (1)

The polynomial part of 8(z)n, denoted by Fn(z)=zn+ } } } , is called the
Faber polynomial of degree n generated by set E.

Let

9(w)=w+b0+
b1

w
+

b2

w2+ } } } (2)
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be the inverse function of w=8(z). Thus 9(w) maps the domain |w|>\E

conformally onto C� "E. Faber [4] proved that

9$(w)
9(w)&z

= :
�

n=0

Fn(z)
wn+1 , |w|>\E , z # E. (3)

Consider the mapping function

9(w) :=w+
1

(m&1)wm&1 , m=2, 3, ...,

which is conformal in exterior of the circle |w|=\E . The boundary of the
associated compact set

E=Hm : =C� "[z # C : z=9(w), |w|>\E] (4)

is a hypocycloid with a parametric equation

z=ei%+
1

m&1
e&i(m&1) %, m=2, 3, ..., 0�%<2?.

The zeros and local extreme points of Faber polynomials associated with
the hypocycloid were studied recently in [5] and [2]. In this note, we
determine an algebraic expression of Faber polynomial. In addition, we
represent Fn(z) in terms of generalized hypergeometric functions. Our
results can be considered as generalizations of well-known properties of the
representations of Chebyshev polynomial.

We define a generalized hypergeometric function by

pFq_a1 , a2 , ..., ap ;
b1 , b2 , ..., bq ;

x&= :
�

k=0

(ap)k

(bq)k

xk

k!
,

in which no denominator parameter bj is allowed to be zero or a negative
integer. If any numerator parameter ai is a zero or a negative integer, the
series terminates.

We shall present in Section 2 an algebraic formula for Faber polyno-
mials of hypocycloid. In Section 3 we give a hypergeometric representation
for Faber polynomials associated with Steiner hypocycloid H3 . We
represent in Section 4 Faber polynomials for hypocycloid by generalized
hypergeometric functions. Finally, in Section 5, we express the density
function of zeros of Faber polynomials as a generalized hypergeometric
function.
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2. AN ALGEBRAIC FORMULA

The closed algebraic form of Faber polynomial associated with Hm was
known in the case when m=2, 3. In this section we use Cauchy integral
formula to derive an explicit formula for all m.

Theorem 1. Let Fn(z) be the Faber polynomial of Hm of degree n. Then
for n�1,

Fn(z)=n :
[n�m]

j=0

(&1) j 1(n&mj+ j)
1(n&mj+1)(m&1) j j!

zn&mj, (5)

where

_ n
m&={

n
m

,

n&k
m

,

n=0 mod(m),

n=k mod(m), k=1, 2, ..., m&1.

Proof. As we have noted in Section 1 that for m=2, 3, ...,

z=9(w)=w \1+
1

(m&1)wm+
maps |w|>\E conformally onto C� "Hm . Let 8(z) be its inverse. If follows
from the definition of Faber polynomials that Fn(z) generated by Hm is
given by

Fn(z)= :
n

j=0

cn& j zn& j,

where cn& j is the Laurent coefficient in the expansion of [8(z)]n, that is,
for j=0, 1, 2, ..., n

cn& j=|
|z|=R

[8(z)]n

zn& j+1 dz,

with R chosen sufficiently large so that Hm is contained in the interior of
the region bounded by the circle |z|=R. Alternatively, using substitution
z=9(w), we obtain for j=0, 1, 2. . ., n,

cn& j=|
|w|=r>1

wn9$(w)
[9(w)]n& j+1 dw,
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By the symmetry of Hm , we see that 9(w) is an m-fold symmetric mapping
function. It is easy to see that cn& j=0 if j{0 mod(m) for
j=0, 1, 2, ..., [n�m]. Thus, Fn(z) has the following form:

Fn(z)= :
[n�m]

j=0

cn&mjzn&mj.

By Cauchy's Theorem, we see that the coefficients cn&mj 's are the same as
those of 1�w in the expansion of wn9$(w)�[9(w)]n&mj+1.

wn9$(w)
[9(w)]n&mj+1=wmj&1\1&

(m&1)
(m&1)wm+\1+

(m&1)wm+
&(n&mj+1)

=wmj&1 \1+
1

(m&1)wm+
&(n&mj+1)

&wmj&m&1\1+
1

(m&1)wm+
&(n&mj+1)

.

Noticing that for |w|>\E , we have

\1+
1

(m&1)wm+
&(n&mj+1)

= :
�

i=0

(&1) i \n&mj+1
i + w&mi

(m&1) j i!
,

where

\:
i+=:(:+1)(:+2) } } } (:+i&1), \:

0+=1, \ :
&1+=0.

Thus, the coefficient of 1�w is given by

cn&mj=(&1) j 1
(m&1) j j! \

n&mj+1
j +&(&1) j&1 (m&1)1& j

( j&1)! \n&mj+1
j&1 +

=(&1) j n
(m&1) j j!

(n&mj+1)(n&mj+2) } } } (n&mj+ j&1)

=(&1) j n1(n&mj+ j)
(m&1) j 1(n&mj+1) j!

.

Thus we have (5).

140 MATTHEW X. HE



File: 640J 299905 . By:BV . Date:23:10:96 . Time:10:39 LOP8M. V8.0. Page 01:01
Codes: 1977 Signs: 760 . Length: 45 pic 0 pts, 190 mm

3. STEINER HYPOCYCLOID H2

In this section, we present explicitly the Faber polynomials associated
with Steiner hypocycloid, that is m=3, in terms of hyperheometric func-
tions. The extension for all m's will be given in Section 4.

Theorem 2. Let Fn(z) be the Faber polynomial of H2 of degree n. Then

F3n \ 8
27

z3+=(&1)n 3
2n 3F2 _

&n,
n
2

,
n+1

2
;

& , (6)
8

27
z3

1
3

,
2
3

;

F3n+1 \ 8
27

z3+=(&1)n 3n+1
2n z3F2_

&n,
n+1

2
,

n+2
2

;

& , (7)
8

27
z3

2
3

,
4
3

;

F3n+2 \ 8
27

z3+=(&1)n (3n+1)(n+1)
2n+1 z3F2_

&n,
n+2

2
,
n+3

2
;

& .
8

27
z3

3
3

,
6
3

;

(8)

Proof. For m=3, Fn(z) satisfies the third order linear differential
equations [5]

_\27
8

&z3+D3&
9
2

z2D2+
3n(n+1)&10

4
zD+

n2(n+3)
4 &Fn(z)=0, (9)

where D=d�dz is a differential operator. We now consider the case when
n=0 mod(3). Let x=( 2

3z)3 and Y(x)=Fn(( 2
3z)3), then the equation (9)
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becomes a well-known Fuchian type of differential equation with regular
singularities at x=0, 1, and at infinity,

_x3(1&x) D3+\2x&
7
2

x2+ D2

+\2
9

+
n(n+1)&18

12
x+ D+

n2(n+3)
108 & Y(x)=0. (10)

Next we compare the equation (10) with the following type of Fuchian
differential equation

_% `
2

j=1

(%+bj&1)&x `
3

i=1

(%+ai)& Y(x)=0, (11)

where the differential operator %=xD. The solution to this differential
equation can be expressed as a generalized hypergeometric function [6]

Y(x)=3F2_a1 , a2 , a3 ;
b1 , b2 ;

x&. (12)

In order to determine explicitly the parameters a1 , a2 , a3 and b1 , b2 , we
write the equation (12) as the following form

[x2(1&x) D3+[(b1+b2+1) x&(a1+a2+a3+3) x2] D2

+[b1 b2&(a1a2+a1a3+a2a3)+(a1+a2+a3+1) x] D

&a1a2 a3] Y(x)=0. (13)

By comparing (10) and (13), we have the following system of equations:

a1+a2+a3+3=
7
2

a1a2+a1 a3+a2a3+a1+a2+a3+1=
&n(n+1)

12
+

3
2

a1a2 a3=
&n2(n+3)

108

b1+b2+1=2

b1b2=
2
9

.
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Solving the system, we find

a1=&
n
3

, a2=
n
6

, a3=
n+3

6
,

and

b1=
1
3

, b2=
2
3

.

Next we evaluate Fn(z) from (5) at z=0,

Fn(0)=(&1)n 3
2n . (14)

From the relations between Y(x) and Fn(z), as well as x and z,
Equation (6) is an immediate consequence of (12) and (14). Since the
proofs of (7) and (8) are similar to the proof of (6), we omit them.

4. HYPOCYCLOID Hm

In this section, we generalize the 3-cusped hypocycloid into m-cusped
hypocycloid. Faber polynomials for m-hypocycloid are represented in terms
of generalized hypergeometric functions with parameters (m, m&1).

Theorem 3. For k=0, 1, 2, ..., m&1, Faber polynomial associated with
Hm Fmn+k(z) has the following generalized hypergeometric representation,

Fmn+k \\m&1
m

z+
m

+=cmn+kzk
mFm&1 _

a1 , a2 , ..., am ;

& ,\m&1
m

z+
m

b1 , b2 , ..., bm&1;
(15)

where c$mn+k s, a$i s and b$i s are constants depend only on k, m, n.

Proof. It was showed in [5] that Fn(z) satisfies an m th order linear dif-
ferential equations [5]

_ 1
m&1

Dm+
1

mm (n&zD) `
m&2

k=0

(n+mk+(m&1) zD& Fn(z)=0,
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where D=d�dz is a differential operator. Using the relation [6, pp. 25�26]

`
p

i=1

(zD+d1)= :
p

r=0

dp, r zrDr, (16)

where

dp, r=
(&1)r

r!
:
r

s=0

(&r)s

s!
`

p

t=1

(r+dt),

we can write (16) as

__1&\m&1
m

z+
m

& Dm+\m&1
m +

m

:
m&1

r=1

grzrDr+\m&1
m +

m

ng0& Fn(z)=0.

(17)

Now we let

x=\m&1
m

z+m

and

Y(x)=zkFmn+k\\m&1
m

z+
m

+
in (16) then it becomes a well-known Fuchian type of differential equation
with regular singularities at x=0, 1, and at infinity,

_xm&1(1&x) Dm+ :
m&1

r=1

xr&1(Arx&Br) Dr+A0&Y(x)=0. (18)

On the other hand, for %=xD,

Y(x)=pFq_a1 , a2 , ..., ap ;
b1 , b2 , ..., bq ;

x&, (19)

is a solution of the differential equation [6, p. 136]

_% `
m&1

j=1

(%+bj&1)&x `
m

i=1

(%+a1)&Y(x)=0. (20)

If p=q+1, (20) is of the form

_xq(1&x) D p+ :
q

r=1

xr&1(Prx&Qr) Dr+P0&Y(x)=0. (21)
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Let p=m, q=m&1 in (21). We see that (18) has the same form as (21).
Therefore, Faber polynomial Fn(z) can be represented in terms of hyper-
geometric function with parameters (m, m&1). By comparing (18), (20)
and (21), we see that we have 2m&1 equations with 2m&1 unknowns.
Therefore, coefficients a$j s and b$j s can be determined by solving the system
of 2m&1 equations. To determine the constant term of Fn(z), we use our
algebraic formula (5) to compute Fn(0). From relations between Y(x) and
Fn(z), as well as z and x, we can implicitly write Fn(z) in terms of
generalized hypergeometric functions.

We have now completed our proof.

5. ZERO DENSITY FUNCTION

The limiting behavior of the zeros of Fn(z) associated with Hm was
determined in [5],

lim
n � �

1
n

:
n

k=1

1
z&zn, k

=S(z),

where S(z) is the analytic continuation to C� "Sm of the power series

S(z)= :
�

k=0

(mk)!
k!((m&1) k)! (m&1)k z&mk&1, |z|>

m
m&1

, (22)

and

Sm={xe2j?i�m; 0�x�
m

m&1
, j=0, 1, ..., m&1, m=2, 3, . . .= .

In this section we represent the limit function S(z) in terms of generalized
hypergeomatric function with parameters (m&1, m&2).

Theorem 4. Let S(z) be the limit function of (22). Then

S(z)=
1
z m&1Fm&2 _

1
m

,
2
m

, ...,
m&1

m
;

& . (23)\ m
m&1

z&1+
m

1
m&1

,
2

m&1
, ...,

m&2
m&1

;
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In particular, when m=2 we have

S(z)=
1

- 4&z2
, z # [&2, 2],

which is the density function of zero distribution of Chebyshev polynomials of
first kind.

Proof. Using the power series of S(z), we derive a hypergeometric
representation for S(z). It follows from (22) that

S(z)= :
�

k=0

(mk)!
k!((m&1) k)! (m&1)k z&mk&1

=
1
z

:
�

k=0

(mkk!) \mk \ 1
m+k+ } } } \mk \m&1

m +k+ ((m&1) z)&mk

k!((m&1)k k!) \(m&1)k \ 1
m&1+k+ } } } \(m&1)k \m&2

m&1+k +

=
1
z

:
�

k=0

\ 1
m+k

} } } \m&1
m +k

mmk

\ 1
m&1+k

} } } \m&2
m&1+k

(m&1)mk k!
z&mk

=
1
z

:
�

k=0

\ 1
m+k

} } } \m&1
m +k

\ 1
m&1+k

} } } \m&2
m&1+k

k!
\ m

m&1
z+

&mk

=
1
z m&1Fm&2 _

1
m

,
2
m

, ...,
m&1

m
;

& .\ m
m&1

z&1+
m

1
m&1

,
2

m&1
, ...,

m&2
m&1

;
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